Telegram Group & Telegram Channel
⭕️ معضل اندازه گیری: وجود نتایج مرجح

این مسئله تا حد خوبی شبیه به مسئلۀ - نتیجه - است که مادلین مطرح می‌کند. این مسئله می‌پرسد که چرا با وجود اینکه ما می‌توانیم برای یک فضای هیلبرت بی شمار پایۀ متعامد و یکه تعریف کنیم و به تبعِ آن بی‌شمار عملگر هرمیتی داریم، نمی توانیم یکسری از بردارهای فضای هیلبرت را مشاهده کنیم. مثلا هیچ وقت یک گربه را در حالت ترکیبیِ زنده و مرده مشاهده نمی‌کنیم و یا هیچ جسمی را در دو مکان نمیبینیم در صورتی که این حالات وجود دارند. به بیان دیگر، چرا به ازای هر عملگر هرمیتی، یک کمیتِ مشاهده پذیر نداریم؟

برای روشن شدن این مطلب یک مثال میزنیم. همانطور که از جبرخطی می دانیم، می توان در یک فضای برداری، یک بردار دلخواه را انتخاب کرد و آن را به عنوان یکی از پایه های آن فضا در نظر گرفت و بقیۀ پایه ها را با توجه به موقعیتِ بردارِ اول، طوری انتخاب کرد که بر بردار اول عمود باشند؛ و با توجه به این پایه‌ها، می‌توان یک عملگر تعریف کرد که این بردارهای پایه، ویژه مقدارهای آن عملگر باشند. حال به عنوان مثال فضای برداریِ هیلبرتی که عملگر مکان در آن تعریف می شود را در نظر بگیرید. می‌دانیم که ویژه بردارهای عملگر مکان (یعنی x ها) پایه‌های این فضا هستند. این فضای برداری، یک فضای پیوسته است و همانطور که گفتیم می‌توانیم یک بردارِ دلخواه از این فضا را به عنوان پایه‌ای، که مابقی پایه‌های متعامد حول آن شکل می‌گیرند، انتخاب کنیم. پس به عنوان مثال می‌توانیم بردارِ x1+x2 (که در آن x1 مساوی با x2 نیست و از بهنجار کردن بردار چشم پوشی می‌کنیم) را به عنوان ویژه بردارِ یک عملگر هرمیتی در نظر بگیریم. این بردار می‌تواند یک حالتِ واقعی باشد اما در واقعیت ما هیچ‌وقت یک جسم را در یک برهم‌نهی از دو مکان مشاهده نمی‌کنیم و نظریۀ کوانتومِ رایج به ما نمی‌گوید چرا ما تنها یک سری از بردارهای موجود در فضای هیلبرت را به عنوانِ مشاهده‌پذیر می‌توانیم مشاهده کنیم و چه چیز این مرجح بودن حالات را مشخص می‌کند.

در انتها، شاید بتوان گفت که در مجموعۀ تعابیر ارائه شده برای نظریۀ کوانتوم، تعبیر وادوسی، که ان‌شاءالله در آینده به آن می‌پردازیم، تا حدی به این مسئله پاسخ داده است. اما، در چارچوبِ تعابیر موجود، مسئلۀ نتایج احتمالاتی کماکان بی‌پاسخ مانده است.

🆔 @QMproblems

yon.ir/4nsfh



tg-me.com/QMproblems/83
Create:
Last Update:

⭕️ معضل اندازه گیری: وجود نتایج مرجح

این مسئله تا حد خوبی شبیه به مسئلۀ - نتیجه - است که مادلین مطرح می‌کند. این مسئله می‌پرسد که چرا با وجود اینکه ما می‌توانیم برای یک فضای هیلبرت بی شمار پایۀ متعامد و یکه تعریف کنیم و به تبعِ آن بی‌شمار عملگر هرمیتی داریم، نمی توانیم یکسری از بردارهای فضای هیلبرت را مشاهده کنیم. مثلا هیچ وقت یک گربه را در حالت ترکیبیِ زنده و مرده مشاهده نمی‌کنیم و یا هیچ جسمی را در دو مکان نمیبینیم در صورتی که این حالات وجود دارند. به بیان دیگر، چرا به ازای هر عملگر هرمیتی، یک کمیتِ مشاهده پذیر نداریم؟

برای روشن شدن این مطلب یک مثال میزنیم. همانطور که از جبرخطی می دانیم، می توان در یک فضای برداری، یک بردار دلخواه را انتخاب کرد و آن را به عنوان یکی از پایه های آن فضا در نظر گرفت و بقیۀ پایه ها را با توجه به موقعیتِ بردارِ اول، طوری انتخاب کرد که بر بردار اول عمود باشند؛ و با توجه به این پایه‌ها، می‌توان یک عملگر تعریف کرد که این بردارهای پایه، ویژه مقدارهای آن عملگر باشند. حال به عنوان مثال فضای برداریِ هیلبرتی که عملگر مکان در آن تعریف می شود را در نظر بگیرید. می‌دانیم که ویژه بردارهای عملگر مکان (یعنی x ها) پایه‌های این فضا هستند. این فضای برداری، یک فضای پیوسته است و همانطور که گفتیم می‌توانیم یک بردارِ دلخواه از این فضا را به عنوان پایه‌ای، که مابقی پایه‌های متعامد حول آن شکل می‌گیرند، انتخاب کنیم. پس به عنوان مثال می‌توانیم بردارِ x1+x2 (که در آن x1 مساوی با x2 نیست و از بهنجار کردن بردار چشم پوشی می‌کنیم) را به عنوان ویژه بردارِ یک عملگر هرمیتی در نظر بگیریم. این بردار می‌تواند یک حالتِ واقعی باشد اما در واقعیت ما هیچ‌وقت یک جسم را در یک برهم‌نهی از دو مکان مشاهده نمی‌کنیم و نظریۀ کوانتومِ رایج به ما نمی‌گوید چرا ما تنها یک سری از بردارهای موجود در فضای هیلبرت را به عنوانِ مشاهده‌پذیر می‌توانیم مشاهده کنیم و چه چیز این مرجح بودن حالات را مشخص می‌کند.

در انتها، شاید بتوان گفت که در مجموعۀ تعابیر ارائه شده برای نظریۀ کوانتوم، تعبیر وادوسی، که ان‌شاءالله در آینده به آن می‌پردازیم، تا حدی به این مسئله پاسخ داده است. اما، در چارچوبِ تعابیر موجود، مسئلۀ نتایج احتمالاتی کماکان بی‌پاسخ مانده است.

🆔 @QMproblems

yon.ir/4nsfh

BY Quantum problems




Share with your friend now:
tg-me.com/QMproblems/83

View MORE
Open in Telegram


Quantum problems Telegram | DID YOU KNOW?

Date: |

Should I buy bitcoin?

“To the extent it is used I fear it’s often for illicit finance. It’s an extremely inefficient way of conducting transactions, and the amount of energy that’s consumed in processing those transactions is staggering,” the former Fed chairwoman said. Yellen’s comments have been cited as a reason for bitcoin’s recent losses. However, Yellen’s assessment of bitcoin as a inefficient medium of exchange is an important point and one that has already been raised in the past by bitcoin bulls. Using a volatile asset in exchange for goods and services makes little sense if the asset can tumble 10% in a day, or surge 80% over the course of a two months as bitcoin has done in 2021, critics argue. To put a finer point on it, over the past 12 months bitcoin has registered 8 corrections, defined as a decline from a recent peak of at least 10% but not more than 20%, and two bear markets, which are defined as falls of 20% or more, according to Dow Jones Market Data.

The STAR Market, as is implied by the name, is heavily geared toward smaller innovative tech companies, in particular those engaged in strategically important fields, such as biopharmaceuticals, 5G technology, semiconductors, and new energy. The STAR Market currently has 340 listed securities. The STAR Market is seen as important for China’s high-tech and emerging industries, providing a space for smaller companies to raise capital in China. This is especially significant for technology companies that may be viewed with suspicion on overseas stock exchanges.

Quantum problems from tw


Telegram Quantum problems
FROM USA